Non-iterative imaging of inhomogeneous cold atom clouds using phase retrieval from a single diffraction measurement.

نویسندگان

  • D V Sheludko
  • A J McCulloch
  • M Jasperse
  • H M Quiney
  • R E Scholten
چکیده

We demonstrate a new imaging technique for cold atom clouds based on phase retrieval from a single diffraction measurement. Most single-shot diffractive imaging methods for cold atoms assume a monomorphic object to extract the column density. The method described here allows quantitative imaging of an inhomogeneous cloud, enabling recovery of either the atomic density or the refractive index, provided the other is known. Using ideas borrowed from density functional theory, we calculate the approximate paraxial diffracted intensity derivative from the measured diffracted intensity distribution and use it to solve the Transport of Intensity Equation (TIE) for the phase of the wave at the detector plane. Back-propagation to the object plane yields the object exit surface wave and then provides a quantitative measurement of either the atomic column density or refractive index. Images of homogeneous clouds showed good quantitative agreement with conventional techniques. An inhomogeneous cloud was created using a cascade electromagnetically induced transparency scheme and images of both phase and amplitude parts of refractive index across the cloud were separately retrieved, showing good agreement with theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffraction-contrast imaging of cold atoms

We consider the inverse problem of in-line holography, applied to minimally destructive imaging of cold atom clouds. Absorption imaging near resonance provides a simple, but destructive measurement of atom column density. Imaging off resonance greatly reduces heating, and sequential images may be taken. Under the conditions required for off-resonant imaging, the generally intractable inverse pr...

متن کامل

Experimental verification of coherent diffractive imaging by a direct phase retrieval method with an aperture-array filter.

Recently, we have proposed a coherent diffractive imaging using a noniterative phase retrieval method with the filter of an aperture array. The first (to our knowledge) experimental demonstration of this coherent imaging is presented here, in which a complex-valued object illuminated by a diode laser is reconstructed from the isolated diffraction intensities of the object's wave field, transmit...

متن کامل

Employing dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype

Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...

متن کامل

Imaging cold atoms with shot-noise and diffraction limited holography

We theoretically develop and experimentally demonstrate a holographic method for imaging cold atoms at the diffraction and photon shot noise limits. Aided by a double point source reference field, a simple iterative algorithm robustly removes the twin image of an Rb cold atom sample during the image reconstruction. Shot-noise limited phase shift and absorption images are consistently retrieved ...

متن کامل

Phase retrieval by coherent modulation imaging

Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2010